Learning Musculoskeletal Dynamics with Non-Parametric Models
نویسندگان
چکیده
Gait control of bipeds has been a key challenge in robot locomotion for decades. A key component toward controller design is a good model of the robot and its interactions with the environment. For systems with highly compliant and complex actuation, however, deriving the models for the essential system components is quite tedious. In this paper, we propose to learn non-parametric models for a human inspired musculoskeletal biped, whose nonlinear actuation dynamics and passive tendon elasticities make modeling very challenging. We present first promising results that hint at the usefulness of datadriven modeling approaches in the context of legged robots.
منابع مشابه
Comparing Structure Learning Methods for RKHS Embeddings of Protein Structures
Non-parametric graphical models, embedded in reproducing kernel Hilbert spaces, provide a framework to model multi-modal and arbitrary multi-variate distributions, which are essential when modeling complex protein structures. Non-parametric belief propagation requires the structure of the graphical model to be known a priori. Currently there are nonparametric structure learning algorithms avail...
متن کاملStock price analysis using machine learning method(Non-sensory-parametric backup regression algorithm in lin-ear and nonlinear mode)
The most common starting point for investors when buying a stock is to look at the trend of price changes. In recent years, different models have been used to predict stock prices by researchers, and since artificial intelligence techniques, including neural networks, genetic algorithms and fuzzy logic, have achieved successful re-sults in solving complex problems; in this regard, more exploita...
متن کاملPredictive Ability of Statistical Genomic Prediction Methods When Underlying Genetic Architecture of Trait Is Purely Additive
A simulation study was conducted to address the issue of how purely additive (simple) genetic architecture might impact on the efficacy of parametric and non-parametric genomic prediction methods. For this purpose, we simulated a trait with narrow sense heritability h2= 0.3, with only additive genetic effects for 300 loci in order to compare the predictive ability of 14 more practically used ge...
متن کاملRegression Modeling for Spherical Data via Non-parametric and Least Square Methods
Introduction Statistical analysis of the data on the Earth's surface was a favorite subject among many researchers. Such data can be related to animal's migration from a region to another position. Then, statistical modeling of their paths helps biological researchers to predict their movements and estimate the areas that are most likely to constitute the presence of the animals. From a geome...
متن کاملPseudospectral Model Predictive Control under Partially Learned Dynamics
Trajectory optimization of a controlled dynamical system is an essential part of autonomy, however many trajectory optimization techniques are limited by the fidelity of the underlying parametric model. In the field of robotics, a lack of model knowledge can be overcome with machine learning techniques, utilizing measurements to build a dynamical model from the data. This paper aims to take the...
متن کامل